Ridge Regression under Alternative Loss Criteria

نویسندگان

  • Karl Lin
  • Jan Kmenta
چکیده

T HE introduction by Hoerl and Kennard (1970) of a ridge regression estimator to deal with the problem of multicollinearity in regression has been followed by a large number of papers in the statistical literature. In the area of econometrics, though, the method of ridge regression has received little attention. I One of the reasons for the lack of interest in ridge regression on the part of the econometricians may be the fact that Hoerl and Kennard have justified their method on pragmatic grounds without providing any interpretation. Other reasons for the reluctant reception of ridge regression by econometricians are likely to include the difficulty in selecting a suitable value of the shrinking factor, which is important in securing a dominance over least squares, and the restrictive nature of the mean square error criterion, on which the claim of this dominance rests. In this paper we address all of these issues. The basic problem is that of estimating the coefficients of the standard linear regression model

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalized Ridge Regression Estimator in Semiparametric Regression Models

In the context of ridge regression, the estimation of ridge (shrinkage) parameter plays an important role in analyzing data. Many efforts have been put to develop skills and methods of computing shrinkage estimators for different full-parametric ridge regression approaches, using eigenvalues. However, the estimation of shrinkage parameter is neglected for semiparametric regression models. The m...

متن کامل

Diagnostic Measures in Ridge Regression Model with AR(1) Errors under the Stochastic Linear Restrictions

Outliers and influential observations have important effects on the regression analysis. The goal of this paper is to extend the mean-shift model for detecting outliers in case of ridge regression model in the presence of stochastic linear restrictions when the error terms follow by an autoregressive AR(1) process. Furthermore, extensions of measures for diagnosing influential observations are ...

متن کامل

Boosting ridge regression

Ridge regression is a well established method to shrink regression parameters towards zero, thereby securing existence of estimates. The present paper investigates several approaches to combining ridge regression with boosting techniques. In the direct approach the ridge estimator is used to fit iteratively the current residuals yielding an alternative to the usual ridge estimator. In partial b...

متن کامل

Superiority of the MCRR Estimator Over Some Estimators In A Linear Model

Modified (r, k) class ridge regression (MCRR) which includes unbiased ridge regression (URR), (r, k) class, principal components regression (PCR) and the ordinary least squares (OLS) estimators is proposed in regression analysis, to overcome the problem of multicollinearity. In this paper, we derive the necessary and sufficient conditions for the superiority of the MCRR estimator over each of t...

متن کامل

Estimation of genetic effects in the presence of multicollinearity in multibreed beef cattle evaluation.

Breed additive, dominance, and epistatic loss effects are of concern in the genetic evaluation of a multibreed population. Multiple regression equations used for fitting these effects may show a high degree of multicollinearity among predictor variables. Typically, when strong linear relationships exist, the regression coefficients have large SE and are sensitive to changes in the data file and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008